Escolhendo a melhor linha de tendência para seus dados Quando você deseja adicionar uma linha de tendência a um gráfico no Microsoft Graph, você pode escolher qualquer um dos seis diferentes tipos de tendências. O tipo de dados que você determina o tipo de linha de tendência que você deve usar. Confiabilidade Trendline Uma linha de tendência é mais confiável quando seu valor R-quadrado está em ou perto de 1. Quando você ajusta uma linha de tendência para seus dados, Graph calcula automaticamente seu valor R-squared. Se desejar, você pode exibir esse valor no seu gráfico. Uma linha de tendência linear é uma linha reta de melhor ajuste que é usada com conjuntos de dados lineares simples. Seus dados são lineares se o padrão em seus pontos de dados se assemelhar a uma linha. Uma linha de tendência linear geralmente mostra que algo está aumentando ou diminuindo a uma taxa constante. No exemplo a seguir, uma linha de tendência linear mostra claramente que as vendas de refrigeradores aumentaram consistentemente ao longo de um período de 13 anos. Observe que o valor R-squared é 0.9036, que é um bom ajuste da linha para os dados. Uma linha de tendência logarítmica é uma linha curvada de melhor ajuste que é mais útil quando a taxa de mudança nos dados aumenta ou diminui rapidamente e, em seguida, nivela para fora. Uma linha de tendência logarítmica pode usar valores negativos ou positivos. O exemplo a seguir usa uma linha de tendência logarítmica para ilustrar o crescimento populacional previsto de animais em uma área de espaço fixo, onde a população se estabilizou à medida que o espaço para os animais diminuiu. Observe que o valor R-quadrado é 0.9407, que é um ajuste relativamente bom da linha para os dados. Uma linha de tendência polinomial é uma linha curva que é usada quando os dados flutuam. É útil, por exemplo, analisar ganhos e perdas em um grande conjunto de dados. A ordem do polinômio pode ser determinada pelo número de flutuações nos dados ou por quantas curvas (colinas e vales) aparecem na curva. Uma linha de tendência polinomial da Ordem 2 geralmente tem apenas uma colina ou vale. A ordem 3 geralmente tem uma ou duas colinas ou vales. A ordem 4 geralmente tem até três. O exemplo a seguir mostra uma linha de tendência polinômica da ordem 2 (uma colina) para ilustrar a relação entre velocidade e consumo de gasolina. Observe que o valor R-squared é 0.9474, que é um bom ajuste da linha para os dados. Uma linha de tendência de energia é uma linha curvada que é melhor usada com conjuntos de dados que comparam medidas que aumentam a uma taxa específica, por exemplo, a aceleração de um carro de corrida em intervalos de um segundo. Você não pode criar uma linha de tendência de energia se seus dados contiverem valores zero ou negativos. No exemplo a seguir, os dados de aceleração são mostrados ao plotar a distância em metros por segundos. A linha de tendência de energia demonstra claramente a crescente aceleração. Observe que o valor R-squared é 0.9923, que é um ajuste quase perfeito da linha para os dados. Uma linha de tendência exponencial é uma linha curva que é mais útil quando os valores de dados aumentam ou caem a taxas cada vez maiores. Você não pode criar uma linha de tendência exponencial se seus dados contiverem valores zero ou negativos. No exemplo a seguir, uma linha de tendência exponencial é usada para ilustrar a quantidade decrescente de carbono 14 em um objeto à medida que envelhece. Observe que o valor R-squared é 1, o que significa que a linha se ajusta perfeitamente aos dados. Uma linha de tendência média móvel suaviza as flutuações nos dados para mostrar um padrão ou tendência mais claramente. Uma linha de tendência média móvel usa um número específico de pontos de dados (definido pela opção Período), os em média e usa o valor médio como um ponto na linha de tendência. Se o Período for definido como 2, por exemplo, a média dos dois primeiros pontos de dados é usada como o primeiro ponto da linha de tendência média móvel. A média do segundo e terceiro pontos de dados é usada como o segundo ponto da linha de tendência, e assim por diante. No exemplo a seguir, uma linha de tendência média móvel mostra um padrão no número de casas vendidas ao longo de um período de 26 semanas. Forecast com análise de séries temporais O que está pregando Previsão é um método que é amplamente utilizado na análise de séries temporais para prever uma variável de resposta, Tais como lucros mensais, desempenho de ações ou números de desemprego, por um período de tempo especificado. As previsões são baseadas em padrões em dados existentes. Por exemplo, um gerenciador de armazém pode modelar quanto produto a pedido para os próximos 3 meses com base nos 12 meses anteriores de pedidos. Você pode usar uma variedade de métodos de séries temporais, como análise de tendências, decomposição ou suavização exponencial única, para modelar padrões nos dados e extrapolar esses padrões para o futuro. Escolha um método de análise se os padrões são estáticos (constante ao longo do tempo) ou dinâmicos (mudança ao longo do tempo), a natureza da tendência e os componentes sazonais, e até que ponto você pretende prever. Antes de produzir previsões, ajuste vários modelos de candidatos aos dados para determinar qual modelo é o mais estável e preciso. Previsões para uma análise média móvel O valor ajustado no tempo t é a média móvel não centrada no tempo t -1. As previsões são os valores ajustados na origem da previsão. Se você prevê 10 unidades de tempo à frente, o valor previsto para cada tempo será o valor ajustado na origem. Os dados até a origem são usados para calcular as médias móveis. Você pode usar o método das médias móveis contínuas calculando as médias móveis consecutivas. O método das médias móveis contínuas é freqüentemente usado quando há uma tendência nos dados. Primeiro, calcule e armazene a média móvel da série original. Em seguida, calcule e armazene a média móvel da coluna armazenada anteriormente para obter uma segunda média móvel. Na previsão ingênua, a previsão do tempo t é o valor dos dados no tempo t -1. Usando o procedimento de média móvel com uma média móvel de comprimento, um fornece uma previsão ingênua. Previsões para uma única análise de suavização exponencial O valor ajustado no tempo t é o valor suavizado no tempo t-1. As previsões são o valor ajustado na origem da previsão. Se você prevê 10 unidades de tempo à frente, o valor previsto para cada tempo será o valor ajustado na origem. Os dados até a origem são usados para o alisamento. Na previsão ingênua, a previsão do tempo t é o valor dos dados no tempo t-1. Execute um alisamento exponencial único com um peso de um para fazer previsão ingênua. Previsões para uma análise de suavização exponencial dupla Suavização exponencial dupla utiliza componentes de nível e tendência para gerar previsões. A previsão para m períodos de antecedência de um ponto no tempo t é L t mT t. Onde L t é o nível e T t é a tendência no tempo t. Os dados até o tempo de origem da previsão serão usados para o alisamento. Método Previsões para Invernos Método Winters usa os componentes de nível, tendência e sazonal para gerar previsões. A previsão para os períodos m a partir de um ponto no tempo t é: onde L t é o nível e T t é a tendência no tempo t, multiplicado por (ou adicionado a um modelo aditivo) o componente sazonal para o mesmo período a partir do ano anterior. Winters Method usa dados até o tempo de origem da previsão para gerar as previsões. Média Mínima - MA BREAKING DOWN Média Móvel - MA Como exemplo da SMA, considere uma garantia com os seguintes preços de fechamento em 15 dias: Semana 1 (5 dias) 20, 22, 24, 25, 23 Semana 2 (5 dias) 26, 28, 26, 29, 27 Semana 3 (5 dias) 28, 30, 27, 29, 28 Um MA de 10 dias medeia os preços de fechamento do Primeiros 10 dias como primeiro ponto de dados. O próximo ponto de dados eliminaria o preço mais antigo, adicionaria o preço no dia 11 e levaria a média, e assim por diante, como mostrado abaixo. Conforme observado anteriormente, as MAs desaceleram a ação de preço atual porque são baseadas em preços passados quanto mais o período de tempo para o MA, maior o atraso. Assim, um MA de 200 dias terá um grau de atraso muito maior do que um MA de 20 dias porque contém preços nos últimos 200 dias. O comprimento do MA a ser usado depende dos objetivos de negociação, com MAs mais curtos usados para negociação de curto prazo e MA mais longo prazo mais adequados para investidores de longo prazo. O MA de 200 dias é amplamente seguido por investidores e comerciantes, com pausas acima e abaixo dessa média móvel considerada como sinais comerciais importantes. Os MAs também oferecem sinais comerciais importantes por conta própria, ou quando duas médias atravessam. Um MA ascendente indica que a segurança está em uma tendência de alta. Enquanto um MA decrescente indica que está em uma tendência de baixa. Da mesma forma, o momento ascendente é confirmado com um cruzamento de alta. Que ocorre quando um mes de curto prazo cruza acima de um MA de longo prazo. O impulso descendente é confirmado com um cruzamento de baixa, que ocorre quando um mes de curto prazo cruza abaixo de um MA de longo prazo.
No comments:
Post a Comment